Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 248: 118277, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38266895

ABSTRACT

Managed aquifer recharge (MAR) stands out as a promising strategy for ensuring water resource sustainability. This study delves into the comparative impact of nitrate (NO3-) and oxygen (O2) as electron acceptors in MAR on water quality and safety. Notably, NO3-, acting as an electron acceptor, has the potential to enrich denitrifying bacteria, serving as hosts for antibiotic resistance genes (ARGs) and enriching human bacterial pathogens (HBPs) compared to O2. However, a direct comparison between NO3- and O2 remains unexplored. This study assessed risks in MAR effluent induced by NO3- and O2, alongside the presence of the typical refractory antibiotic sulfamethoxazole. Key findings reveal that NO3- as an electron acceptor resulted in a 2 times reduction in dissolved organic carbon content compared to O2, primarily due to a decrease in soluble microbial product production. Furthermore, NO3- significantly enriched denitrifying bacteria, the primary hosts of major ARGs, by 747%, resulting in a 66% increase in the overall abundance of ARGs in the effluent of NO3- MAR compared to O2. This escalation was predominantly attributed to horizontal gene transfer mechanisms, as evidenced by a notable 78% increase in the relative abundance of mobile ARGs, alongside a minor 27% rise in chromosomal ARGs. Additionally, the numerous denitrifying bacteria enriched under NO3- influence also belong to the HBP category, resulting in a significant 114% increase in the abundance of all HBPs. The co-occurrence of ARGs and HBPs was also observed to intensify under NO3- influence. Thus, NO3- as an electron acceptor in MAR elevates ARG and HBP risks compared to O2, potentially compromising groundwater quality and safety.


Subject(s)
Anti-Bacterial Agents , Groundwater , Humans , Anti-Bacterial Agents/pharmacology , Electrons , Bacteria , Genes, Bacterial , Drug Resistance, Microbial/genetics , Oxygen , Groundwater/microbiology
2.
J Hazard Mater ; 465: 133083, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38181593

ABSTRACT

In this study, an organic loading (OL) of 300 mg/(L d) was set as the relative normal condition (OL-300), while 150 mg/(L d) was chosen as the condition reflecting excessively low organic loading (OL-150) to thoroughly assess the associated risks in the effluent of the biological wastewater treatment process. Compared with OL-300, OL-150 did not lead to a significant decrease in dissolved organic carbon (DOC) concentration, but it did improve dissolved organic nitrogen (DON) levels by ∼63 %. Interestingly, the dissolved organic matter (DOM) exhibited higher susceptibility to transformation into chlorinated disinfection by-products (Cl-DBPs) in OL-150, resulting in an increase in the compound number of Cl-DBPs by ∼16 %. Additionally, OL-150 induced nutrient stress, which promoted engendered human bacterial pathogens (HBPs) survival by ∼32 % and led to ∼51 % increase in the antibiotic resistance genes (ARGs) abundance through horizontal gene transfer (HGT). These findings highlight the importance of carefully considering the potential risks associated with low organic loading strategies in wastewater treatment processes.


Subject(s)
Wastewater , Water Purification , Humans , Sewage/microbiology , Disinfection/methods , Nitrogen , Water Purification/methods
3.
Water Res ; 235: 119835, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36905731

ABSTRACT

Recirculating aquaculture systems (RASs) can be efficiently used for aquaculture, and oxidation treatment is commonly used to improve water quality. However, the effects of oxidation treatments on aquaculture water safety and fish yield in RASs are poorly understood. In this study, we tested the effects of O3 and O3/UV treatments on aquaculture water quality and safety during culture of crucian carp. O3 and O3/UV treatments reduced the dissolved organic carbon (DOC) concentration by ∼40% and destroyed the refractory organic lignin-like features. There was enrichment of ammonia oxidizing (Nitrospira, Nitrosomonas, and Nitrosospira) and denitrifying (Pelomonas, Methyloversatilis, and Sphingomonas) bacteria, and N-cycling functional genes were enriched by 23% and 48%, respectively, after O3 and O3/UV treatments. Treatment with O3 and O3/UV reduced NH4+-N and NO2--N in RASs. O3/UV treatment increased fish length and weight as well as probiotics in fish intestine. However, high saturated intermediates and tannin-like features induced antibiotic resistance genes (ARGs) in O3 and O3/UV treatments, by 52% and ∼28%, respectively, and also enhanced horizontal transfer of ARGs. Overall, the application of O3/UV achieved better effects. However, understanding the potential biological risks posed by ARGs in RASs and determining the most efficient water treatment strategies to mitigate these risks should be goals of future work.


Subject(s)
Water Purification , Water Quality , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Oxidation-Reduction , Aquaculture , Drug Resistance, Microbial
4.
Environ Res ; 212(Pt C): 113399, 2022 09.
Article in English | MEDLINE | ID: mdl-35561828

ABSTRACT

Heterogeneous photo-Fenton technology has drawn tremendous attention for removal of recalcitrant pollutants. Fe-based metal-organic frameworks (Fe-MOFs) are regarded to be superior candidates in wastewater treatment technology. However, the central metal sites of the MOFs are coordinated with the linkers, which reduces active site exposure and decelerates H2O2 activation. In this study, a series of 2, 5-dioxido-1, 4-benzenedicarboxylate (H2DOBDC)-functionalized MIL-100(Fe) with enhanced degradation performance was successfully constructed via solvothermal strategy. The modified MIL-100(Fe) displayed an improvement in photo-Fenton behaviors. The photocatalytic rate constant of optimized MIL-100(Fe)-1/2/3 are 2.3, 3.6 and 4.4 times higher compared with the original MIL-100(Fe). The introduced H2DOBDC accelerates the separation and transfer in photo-induced charges and promotes Fe(II)/Fe(III) cycle, thus improving the performance. •OH and •O2- are main reactive radicals in tetracycline (TCH) degradation. Dealkylation, hydroxylation, dehydration and dealdehyding are the main pathways for TCH degradation.


Subject(s)
Metal-Organic Frameworks , Tetracycline , Catalysis , Ferric Compounds/chemistry , Hydrogen Peroxide/chemistry
5.
Water Res ; 210: 117972, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34952454

ABSTRACT

Governments have formulated stricter wastewater treatment plant (WWTP) discharge standards to address water pollution; however, with the cost of aggravating the refractory of the discharges. These policies are not in line with the classic co-metabolism theory; thus, we evaluated the effects of an easily biodegradable substrate on the removal efficiency of antibiotics and antibiotic resistance genes (ARGs) in the receiving water. In this study, reactor with 8 d of hydraulic retention time (HRT) was constructed to simulate a receiving river, and several antibiotics (0.30 mg/L each) were continuously discharged to the reactor (tetracycline, ciprofloxacin, amoxicillin, chloramphenicol, and sulfamethoxazole). Sodium acetate (NaAc) was used as a representative easily biodegradable substrate, and treatment protocols with and without a co-substrate were compared. The attenuation of the antibiotics in the simulated river and the production and dissemination of ARGs were analyzed. The results showed that 50 mg/L NaAc activated non-specific enzymes (a log2-fold change of 3.1-8.8 compared with 0 mg/L NaAc). The removal rate of the antibiotics was increased by 4-32%, and the toxicity of the downstream water was reduced by 35%. The upregulation of antioxidant enzymes caused the intracellular reactive oxygen species (ROSs) decreased by up to 47%, inhibiting horizontal gene transfer and reducing mobile genetic element-mediated ARGs (mARGs) by 18-56%. Furthermore, NaAc also increased the alpha diversity of the microbial community by 5-15% (Shannon-Wiener Index) and reduced the abundance of human bacterial pathogens by 22-36%. In summary, easily biodegradable substrates in the receiving water are crucial for reducing antibiotic risk.


Subject(s)
Anti-Bacterial Agents , Wastewater , Carbon , Genes, Bacterial , Humans , Policy , Risk Reduction Behavior
6.
J Hazard Mater ; 417: 126147, 2021 09 05.
Article in English | MEDLINE | ID: mdl-34229410

ABSTRACT

Integrating microalgae culture and wastewater purification is a promising technology for sustainable bioresource production. However, the challenge is that toxins in wastewater usually limit risk elimination and cause poor bioresource production. Easy-to-biodegrade substrates could alleviate the resistant stress on a bacterial community but we know little about how they function with microalgae. In this study, we tested if Easy-to-biodegrade substrates could simultaneously promote Chlorella to degrade antibiotic amoxicillin (AMO) and produce bioresources. Sodium acetate (NaAC) was used as the representative co-substrate. The results showed NaAC could enhance AMO removal by 76%. The ß-lactam structure was destroyed and detoxified to small molecules, due to the up-regulation of hydrolase, oxidoreductase, reductase, and transferase. Chlorella biomass production increased by 36%. The genes encoding the glutathione metabolism and peroxisome pathways were significantly up-regulated to alleviate the antibiotic stress, and the DNA replication pathway was activated. As a result, the production of lipid, carbohydrate, and protein was enhanced by 61%, 122%, and 34%, respectively. This study provides new insights for using microalgae to recover bioresources from toxic wastewater and reveals the critical underlying mechanisms.


Subject(s)
Chlorella , Microalgae , Amoxicillin , Biomass , Sodium Acetate , Wastewater
7.
Sci Total Environ ; 764: 142907, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33757248

ABSTRACT

Antibiotics are continuously released into aquatic environments and ecosystems where they accumulate, which increases risks from the transmission of antibiotic resistance genes (ARGs). However, it is difficult to completely remove antibiotics by conventional biological methods, and during such treatment, ARGs may spread via the activated sludge process. Easy-to-biodegrade food have been reported to improve the removal of toxic pollutants, and therefore, this study investigated whether such co-substrates may also decrease the abundance of ARGs and their transferal. This study investigated amoxicillin (AMO) degradation using 0-100 mg/L acetate sodium as co-substrate in a sequencing biological reactor. Proteobacteria, Bacteroidetes, and Actinobacteria were identified as dominant phyla for AMO removal and mineralization. Furthermore, acetate addition increased the abundances of adeF and mdsC as efflux resistance genes, which improved microbial resistance, the coping ability of AMO toxicity, and the repair of the damage from AMO. As a result, acetate addition contributed to almost 100% AMO removal and stabilized the chemical oxygen demand (~20 mg/L) in effluents when the influent AMO fluctuated from 20 to 100 mg/L. Moreover, the total abundance of ARGs decreased by approximately ~30%, and the proportion of the most dominant antibiotic resistance bacteria Proteobacteria decreased by ~9%. The total abundance of plasmids that encode ARGs decreased by as much as ~30%, implying that the ARG spreading risks were alleviated. In summary, easy-to-biodegrade food contributed to the simultaneous elimination of antibiotics and ARGs in an activated sludge process.


Subject(s)
Anti-Bacterial Agents , Sewage , Amoxicillin , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Ecosystem , Genes, Bacterial , Wastewater
8.
J Hazard Mater ; 394: 122574, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32278124

ABSTRACT

ß-Lactam antibiotics are the most commonly used antibiotics, and are difficult to remove by conventional biological treatments because of their persistent and toxic nature. The addition of co-substrates has been successfully employed to improve the removal of refractory pollutants. So, we hypothesized that the co-substrate strategy would increase antibiotic degradation and benefit microbial survival. In this work, we reported that co-substrate (acetate) addition up-regulated key degrading enzymes and resistance related genes in a model bacteria strain (L. aquatilis) when being treated with 0.055 mM amoxicillin (AMO). ß-Lactamase, amidases, transaminase, and amide C-N hydrolase showed increased activation. As a result, AMO removal reached ∼95 %, a ∼60 % increase over the control. Furthermore, the addition of acetate drove the down-stream TCA cycle, which accelerated the detoxification of the intermediates and reduced the microbial inhibition by the antibiotic products to as low as ∼15 %. Besides, the expression levels of genes encoding the efflux pump, penicillin binding proteins, and ß-Lactamase were up-regulated, and the inhibition of peptidoglycan biosynthesis was down-regulated. The cell density was enhanced by ∼170 % and showed improved DNA replication. In conclusion, the addition of the co-substrate accelerated AMO degradation and detoxification by up-regulating degrading enzymes and promoting cell resistance.


Subject(s)
Amoxicillin , beta-Lactamases , Amoxicillin/metabolism , Amoxicillin/toxicity , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/toxicity , Bacteria , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...